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Abstract

In the development process of powertrain systems, 2D function ensembles frequently occur in the context of multi-
run simulations. An analysis has many facets, including distributions of extracted features, comparisons between
ensemble members and target functions, and details-on-demand. The primary contribution of this paper is a design
study of an interactive approach for a comparative visual analysis of 2D function ensembles. The design focuses
on a tight integration of domain-oriented and member-oriented visualization techniques, and it seeks to preserve
the mental model of 2D functions on multiple levels of detail. In this context, we propose a novel focus+context
approach for visualizations relying on data-driven placement which is based on labeling. We also extend work on
feature-preserving downsampling of 2D functions. Our design supports a comparison of 2D functions based on
Juxtaposition, overlay, and explicit differences. It also enables an analysis in terms of extracted scalar features
and 1D aggregations. An evaluation illustrates a workflow in our application context. User feedback indicates a

time saving of 70% for common tasks and a qualitative gain for the entire development process.

Categories and Subject Descriptors (according to ACM CCS):

Generation—Line and curve generation

1.3.3 [Computer Graphics]: Picture/Image

1. Introduction

Multi-run simulations are important for studying com-
plex systems in science and engineering [HelO8]. Depend-
ing on the type of simulation, results may have differ-
ent characteristics. Analyzing ensembles of scalar results
is possible using standard multivariate visualization tech-
niques [BPFG11]. Much work addresses the visual analysis
of many 1D functions such as time-series [HS04, KMG* 06,
M*08]. However, ensembles of higher-dimensional results
are increasingly challenging to analyze.

This paper addresses the visual analysis of ensembles of
2D functions, which are essential in a variety of applications,
e.g., slicing volumetric data [NFBO7]. The application back-
ground motivating this work is the development process of
powertrain systems by means of multi-run simulations as de-
scribed by Matkovic et al. [MGKHO09]. In this context, 2D
functions are a common type of simulation results. An ex-
ample is to simulate the maximal pressure that may occur
within a circular bearing — angle and bearing width defin-
ing the 2D function domain. Such data is essential to ana-
lyze at which load and how bearings might break [Off11].
The figures of this paper refer to this example which is de-
scribed in more detail in Sec. 8.1. Another application of 2D
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functions is to analyze the sensitivity of a scalar simulation
result (e.g., generated torque) to conditions varying during
the operation of an engine. In this case, operational parame-
ters (typically "engine speed" and "load") define the domain
of the 2D function, and they are varied independently from
other simulation parameters.

1.1. Tasks

Engineers for optimizing powertrain systems face different
tasks in the context of 2D function ensembles. Based on pre-
design studies by interviewing domain experts and by ob-
servations with contextual inquiries [SIBB11], we identified
tasks on different levels of abstraction [Mun09]. On a high
level of abstraction, engineers need to:

e Assess data quality — are simulation results plausible?

e Analyze sensitivities — which simulation parameters af-
fect the 2D function ensemble and how?

e Optimize engine designs — which ensemble members be-
have desirable?

On a low level of abstraction, tasks include to:

e Assess distributions of features. Depending on the
aggregation, this can be member-oriented or domain-
oriented. For example, a member-oriented distribution
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considers the maximum for each 2D function, while a
domain-oriented distribution considers the maximum of
the entire ensemble for each point of the 2D domain.

e Compare. Comparison is necessary for characterization
(e.g., compare one ensemble member to another one) and
for optimization (e.g., compare to a target 2D function).

e Retrieve details-on-demand. Details may refer to groups
of members (e.g., clusters), single members, and specific
sample values.

The domain experts described these tasks as cumbersome
and time-consuming. Current tools fail to support transitions
between overview and detail. Overviews are restricted to
common diagrams (e.g., scatterplots) showing pre-computed
scalar statistics. Details involve 2D or 3D plots of single en-
semble members and are inspected one-by-one, where “dis-
criminating differences depends on the trained eye of ex-
perts”, as one engineer said. As a consequence, visualiza-
tions of 2D functions are currently rather used for presenta-
tion than for analysis which was described as a significant
source of uncertainty in the process.

1.2. Design goals

Based on these observations, we defined the subsequent list
of design goals for an interactive visual approach for the
analysis of 2D function ensembles:

e G1: Support a flexible exploration of different types of
member-based and domain-based overviews.

e (G2: Enable a seamless access to details for a subset of
ensemble members or a single 2D function.

e (3: Facilitate comparisons between ensemble members.

e G4: Provide quantitative results where possible.

e GS5: Support an analysis of local features within the 2D
function domain.

e G6: Preserve the mental model “2D function ensemble”
on all levels-of-details.

e G7: Scale to 2D functions with many samples.

e G8: Scale to hundreds of 2D functions at interactive rates.

e (G9: Achieve a seamless integration in their workflow.

Throughout three years, we iteratively refined design con-
cepts based on paper drawings and increasingly functional
software prototypes. Four domain experts ranging from en-
gineer to management level participated in this process.

1.3. Contributions

The primary contributions of this paper are (1) a design study
of an interactive approach for a comparative visual analysis
of 2D function ensembles, and (2) an evaluation of the ap-
proach based on an exemplary workflow in simulation-based
engine design and the report of user feedback. Secondary
contributions include (3) an adaptation of an algorithm for
extrema-preserving downsampling to our needs, and (4) a
novel focus+context approach for glyph-based visualization
techniques which is based on labeling.

2. Related Work

The analysis of multi-run simulations by analyzing ensem-
bles of potentially complex data has become an important
yet challenging visualization topic [WP09]. Key issues in-
clude providing an overview of the result space as well as
relating the parameter to the result space and vice versa for
sensitivity analysis and uncertainty analysis [HelO8]. If the
result space consists of — or has been reduced to — one or
more scalar dimensions, common multivariate visualization
techniques like scatterplots and parallel coordinates can be
applied [BPFG11].

Several approaches address the visual analysis of many
1D functions, typically in the context of time-series data.
Visualizations may represent overlaid function graphs as
envelopes [HS04], semi-transparent graphs [KMG*06], or
kernel density estimates [LH11] and offer brushing tech-
niques to highlight selected subsets of the functions [HS04,
KMG™*06, M*08]. Further approaches include extensions of
the TableLens metaphor [KL06] and a re-orderable matrix
of time series charts [MMKNOS]. While an analysis of 2D
function ensembles may involve 1D slices, the limitation to
1D makes these approaches insufficient for our purpose.

Potter et al. [P*09] present a framework for spatio-
temporal ensembles which combines spatial sum-
maries, trend charts, and spaghetti plots. Bruckner and
Moller [BM10] split and cluster ensembles of visual effects
to enable a result-driven exploration of the design space.
Kehrer [Kehll] analyzes multi-run climate data using
time series, glyphs summarizing statistical properties, and
by brushing statistical moments in scatterplots. Nocke et
al. [NFBO7] also apply coordinated multiple views to ana-
lyze climate-related ensemble data. Statistical aggregations
are compared in multivariate visualizations and details of
single simulation runs are provided as various types of
scientific visualizations. However, none of these approaches
is explicitly designed for 2D function ensembles.

Based on the topological landscape metaphor, Harvey
and Wang [HW10] visualize an ensemble of configura-
tions for a contour tree as distributed icons. Busking et
al. [BBP10] present a design study on the visual exploration
of shape spaces and ensembles of shape models as well as
approaches for a comparative visualization of shapes of 3D
surfaces [BBF* 11]. Our design also combines an icon-based
overview of a feature-space to detailed views of an object
space. Focusing on 2D function ensembles, however, we
face different requirements with respect to the feature space,
the information conveyed as icons, and interaction concepts.
Moreover, none of these approaches addresses the problem
of occlusion in icon-based overviews.

Kao et al. [KDPO1] explicitly address 2D multi-run data
which is treated as 2D probability distribution in a geo-
graphical context. Pixel-wise summaries show different sta-
tistical parameters for each position. Extensions of this ap-
proach cluster along spatial dimensions or group similar
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Figure 1: Overview of the design: (a) the member-oriented overview employing feature-based placement (b) for 524 2D func-
tions; (c) the mid-level focus of 31 selected members; (d) the domain-oriented overview showing the point-wise range of the
selected subset; (e) the 3D surface plot of a single member. The arrows indicate key interactions for linking the parts.

runs [BKS04]. Despite the usefulness as a domain-based
overview, this work does not support an efficient drill-down
to single 2D functions.

The work by Matkovic et al. [MGKHO09] is closest to our
goals. The authors describe an analysis on three levels of
details, i.e., single scalar aggregates (0D), aggregated pro-
files (1D), and data surfaces (2D). Brushing links different
levels as shown in multivariate views. However, the OD and
the 1D level lack 2D context whereas the 2D level is lim-
ited to a small number of functions. Preserving the mental
model of 2D functions on all levels is a key design goal of
our approach (G6). Moreover, handling densely sampled 2D
functions (G7), comparing 2D surfaces (G3), and providing
domain-based overviews (G1) are not discussed. We thus see
a need for an approach enabling a more holistic analysis of
2D function ensembles.

3. Overview of the Design

Our design approach consists of three tightly linked parts
(see Fig. 1): A member-oriented overview, a domain-
oriented overview, and a 3D surface plot for details.

The member-oriented overview (Fig. 1a) visualizes the
ensemble members (i.e., 2D functions) as icons — called base
icons, abbreviated as "BIs" — in a 2D space. It shows distri-
butions of member-specific features and enables member-
oriented interactions (e.g., selection). Appropriate down-
sampling preserves extrema even for small Bls. Options for
placement (Fig. 1b) include numerous derived features and
other characteristics like simulation parameters. To resolve
potential overlap, we introduce a mid-level focus (Fig. 1c)
which integrates larger icons — called focus icons, abbrevi-
ated as "FIs" — of selected members in the same visual con-
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text. Label-placement strategies avoid occlusion while min-
imizing the distance between corresponding Bls and Fls.

The domain-oriented overview (Fig. 1d) shows features
across the 2D function domain as aggregated for the entire
ensemble or any selected subset. It supports domain-oriented
interactions which take immediate effect in the other parts
(e.g., filtering in domain space or positioning 1D slices).

The 3D surface plot (Fig. 1e) shows single members, ag-
gregations of multiple members, or target functions. Option-
ally, all parts of our design enable an explicit comparison of
each ensemble member to a 2D reference function and sup-
port an analysis in terms of similarity-based features.

Our implementation is integrated in a system providing
various additional views for analyzing other facets of ensem-
ble simulations (e.g., parameters, scalar and 1D results). The
coordination between views is based on brushing and linking
simulation runs and updating derived dimensions.

4. Member-Oriented Analysis

A member-oriented analysis treats each 2D function as in-
dividual object and comprises three levels of detail: all
(Sec. 4.1), some (Sec. 4.2), and single members (Sec. 4.3).

4.1. Overview Level

The purpose of this level is to show distributions of
two member-specific features for the entire ensemble in
a scatterplot-like way. The ensemble members themselves
are represented as rectangular base icons (Bls) with a
user-defined aspect ratio (1 being the default). For place-
ment [War(02], each axis can be parameterized by different
classes of features:



S — ]
58.41 Pressure (MPa) 276.96

[a] [

Figure 2: Comparison of downsampling strategies on a
small icon (30 x 14 pixels): (a) averaging blurs the two
peaks; (b) maximum-preserving loses the gap between the
peaks; (c) extrema-preserving keeps minima and maxima.

e Statistics of the function values: Minimum, maximum,
range, mean, standard deviation, 2D integral.

e The position of global extrema within the 2D domain.

e The value at a user-defined point within the 2D domain.

e Arbitrary scalar dimensions of the simulation runs (e.g.,
simulation parameters as on the X-axis in Fig. 1a).

e Rank-based equivalents of all parameterization options
(e.g., ordering members by their maximum) to achieve a
homogenous distribution.

Respective feature values are indicated by the center of each
BI. Color encodes function values across the 2D domain.
Based on the covered range, symmetric colormaps around
zero or linear colormaps otherwise [War(O4] are set as de-
faults. The size of the Bls can be user-defined or derived
from the degree of visual overlap in order to minimize occlu-
sion. Depending on the distribution, appropriate icon sizes
range from points to detailed previews. As our heuristic, au-
tomatic scaling determines the largest icon size which en-
sures that from all pixels of all Bls, at least 90% are visible.

All BIs — and in particular small ones — may require radi-
cal downsampling. Since extrema are the key information in
our context, a downsampling strategy has to preserve them
as much as possible. This forbids indiscriminate averaging.
Instead, the user may — depending on the task — opt to pre-
serve either the maximal or the minimal function values. For
each pixel of a BI, all contained samples and interpolated
values at its border are considered (see Fig. 2b). To minimize
the loss of critical information by occlusion, this option also
determines the ordering of the Bls in Z-direction.

As a third option, we offer a strategy which is inspired
by topology-guided downsampling [KEO1] and seeks to pre-
serve global and visible local extrema of any type (Fig. 2c).
We focus on extrema because saddle points have been de-
scribed as numerically unstable in our context. The steps of
the algorithm are as follows:

1. Assign all vertices of a 2D function to equally-sized
blocks corresponding to the resulting pixels.

2. For each vertex: determine whether it is a visible local or
global extremum. A local extremum is defined visible if
it is an extremum of all vertices assigned to the own and
the eight neighboring pixels.

3. Blocks with one extremum preserve that extremum.

4. Blocks containing both types of extrema prioritize global
over local. For further disambiguation: preserve the one
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with larger absolute distance from the average of all sam-
ples (for global extrema) or the samples of the eight
neighboring pixels (for local extrema).
5. All other blocks take the average of their samples.
As a nice property, the algorithm does not assume any par-
ticular sampling of the 2D functions (irregular sampling can
occur in our context). The idea of visible local extrema is
that a user must unambiguously determine the type of ex-
tremum based on the downsampled icon. The Z-ordering of
BlIs is determined by the overall extremum with larger abso-
lute distance from the average of the entire ensemble.

Summarizing, the data-driven placement has proven to be
easily understood and it flexibly generates meaningful fea-
ture distributions [War(02]. Users appreciated even small Bls
as immediate contextual information. We address the issue
of occlusion by automatic icon scaling and to some degree
by Z-ordering and rank-based placements. However, small
icons are insufficient for a detailed comparison.

4.2. Mid-Level Focus

The purpose of the mid-level focus is to provide a suffi-
cient degree of detail for interesting subsets of the ensem-
ble. Interactions for specifying this focus level include hov-
ering above icons, selection by rectangular brushes within
the overview level, and brushes in other linked views (see
Sec. 7). As design goals of the mid-level focus, the con-
text of the overview level should be preserved whereas oc-
clusion should be avoided. We consider distortion-oriented
approaches [HauO5] a potential risk for acceptance because
they are unfamiliar to engineers and could compromise the
interpretability of the data-driven overview.

The main idea of our approach is to integrate large focus
icons (FIs) for selected ensemble members in regions which
are not covered by Bls of the overview level. The size of FIs
is user-defined while automatic downscaling ensures that FIs
never occupy more than half of the view space. The coloring
is consistent with Bls. Feature-aware downsampling is also
applied to Fls, albeit making use of the higher resolution.
Lines connect FIs to their data-driven position.

The placement of FIs can be considered a labeling prob-
lem (see Luboschik et al. [LSCO8] for a survey). Ali et
al. [AHSO5] describe readability, unambiguity, pleasing,
real-time, frame-coherency, and compaction as general re-
quirements of label placement. In our context, the informa-
tion conveyed by a BI is also provided by its FI. We thus
permit an occlusion of a BI by its FI. In sparse areas, it is de-
sirable that Fls are positioned concentrically with their Bls
to indicate the data-driven position (see Fig. 3). If a concen-
tric placement is not possible, hovering over an FI shows its
precise data-driven position. However, the placement cannot
make any assumptions about the distribution of the overview
level and should preserve consistency in case of incremental
changes of the subset of interest.

Our approach combines a greedy algorithm for an ini-
tial placement of FIs and a subsequent force-directed step
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Figure 3: The mid-level focus for different distributions: (a, b) sparse distribution where most focus icons are close to or above
their base icon without occluding non-selected base icons; (c) the affiliation is still visible for densely clustered base icons.

for a local optimization. In order to preserve the position
of already placed Fls, the greedy algorithm only applies to
new FIs, i.e., when the user extends a selection.We build
on the labeling pipeline by Luboschik et al. [LSCO8] due to
its simplicity and efficiency. The pipeline describes four in-
creasingly expensive steps (i.e., 4-position model, 8-position
model, 4-slider model, distant positions using spiral sam-
pling) and performs each step only once and only for non-
placed FIs. We extend this pipeline in three ways: (1) An ini-
tial check for each FI refers to the data-driven position itself,
ignoring occlusion of the own BI. (2) If FIs have not been
placed at the end of the pipeline due to inevitable occlusion,
we repeat the spiral sampling with an increasing tolerance
with respect to occlusion. Separate thresholds for occluded
pixels of Bls and FIs ensure minimal occlusion between Fls.
(3) Finally, FIs are checked pair-wise for intersecting con-
nection lines; if so, their positions are swapped. This is re-
peated until all overlaps are resolved or a maximal number
of iterations has been reached.

Unlike the initial placement, the force-directed step af-
fects all FIs. The idea is to achieve more fairness for sub-
sequently selected members and to make use of previously
covered space of removed FIs [AHS05]. We now describe
the change in position A; of a focus item 7 in one iteration.
Let O;(x) denote the percentage of pixels of a graphical ob-
ject x occluded by i. Let C(x) be the center of the object x
in a screen space with the width V;, and the height V},. Let
D(x,y) be the normalized vector pointing from C(x) to C(y).
Moreover, let Ly be the vector from the center of a focal item
S to its data-driven position in screen space with [ being the
graphical representation of this connection line and N;(Ly)
being the normalized orthogonal vector of Ly towards i.

L; . . .
A = WIVW| +|Vh +worg (i) +warp (i) +warp (i) (1)

rg(i) = 0i(b)D(b,i) 2
be{B\b(i)}

re()) = ), Oi(f)D(fi) 3)
fe{F\i}

1

() = o Oi(ly)Ni(Ly) “)

IFl refFy

F denotes the set of Fls and B the set of Bls. rg(i) is the
repulsion from BIs, rr (i) is the repulsion from FIs, ry (i) re-
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duces the risk of an FI to be dragged across a connection line.
By experiment, we identified the weights w; = -1, wy =1,
w3z = 10, wg = 15 as a reasonable choice which is insensitive
to the resolution of the visualization and the sizes of FIs and
BlIs. The algorithm proceeds until stabilization or a maximal
number of iterations. Only the final positions are shown and
FIs perform a linear transition to their new position.

The mid-level focus can be considered a semantically dif-
ferent layer on top of the overview. The visual discrimination
is enhanced by desaturating the overview layer during the
presence of FIs. Hovering over an FI highlights the corre-
sponding connection line on top of all other Bls and FIs and
a dot indicates the feature-driven position in the overview
level. This consistently enables a visual mapping also if con-
nection lines are partially occluded or if an FI is placed above
its BI. With regards to interaction, the main purpose of the
mid-level focus is to enable an unambiguous selection of sin-
gle ensemble members. However, during interactions on the
overview level (e.g., feature-based selections), the mid-level
focus appears semi-transparent to enable an unobstructed
view on the feature space (see Fig. 3b).

4.3. Detail Level

Clicking on a focus item displays the respective 2D function
as a 3D surface plot. Despite known flaws of 3D visualiza-
tions [SJOCO1], adding a 3D plot was crucial for acceptance
in our application domain. To preserve consistency, we ap-
ply the same coloring to function values as in the overview
and mid-level focus. An additional wireframe enhances the
perception of surface structures. Users may zoom and rotate
the plot. A title shows the name of the simulation run.

4.4. Comparative Analysis

Comparison is a key task for most types of ensemble simu-
lations [NFBO7] and this is also true in our application do-
main. A comparison can take place on the image-level or
data-level [PP95]. Recently, Gleicher et al. [GAW " 11] cate-
gorized comparative designs as juxtaposition, superposition,
and explicit encodings and they emphasized that each cate-
gory has its tradeoffs. Our approach covers both image- and
data-level comparison and supports juxtaposition, superpo-
sition, and explicit encodings.

The overview as described in Sec. 4.1 enables a data-level
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Figure 4: The comparison mode: (a) 11 outliers are com-
pared to a reference function (grayscale icon) being the
point-wise average of a cluster; (b) detailed 3D compari-
son of a single member (colored surface) to the reference
Sfunction (transparent grid).

comparison via a feature-based placement and an image-
level comparison by juxtaposing function icons. The mid-
level focus (Sec. 4.2) enhances the image-level compari-
son by larger icons and avoidance of occlusion. However,
an image-level comparison is rarely sufficient: Differences
between ensemble members can be small and are hardly
perceptible by mere juxtaposition. Moreover, a comparison
should not be restricted to ensemble members and results
should also be quantitative.

To address these issues, our approach supports a dedicated
comparison mode. In this mode, each ensemble member is
compared to a reference 2D function, denoted as R(x,y),
which can be a user-defined ensemble member, a point-wise
aggregation of multiple or all members, as well as an exter-
nal function like measured data or a target function for op-
timization. R(x,y) is integrated as context information in all
levels of detail (see Fig. 4). In the overview-level, a cross-
hair indicates the feature-driven position of R(x,y) if ap-
plicable. In the mid-level focus, R(x,y) is added as an ad-
ditional focus icon that is connected to the cross-hair (if
shown), unless it coincides by definition with the focus icon
of a member. The icons of all other members display the ex-
plicit point-wise differences to R(x,y). Linear grayscale col-
oring is applied to R(x,y) whereas differences are visualized
using a symmetric colormap around zero (blue for negative
and yellow for positive differences).

In the comparison mode, the detail level (Sec. 4.3) enables
to compare one ensemble member to R(x,y) by a combina-
tion of superposition and explicit encoding (see Fig. 4b). The
compared member is specified by selecting a single member

or by hovering over a focus icon of the mid-level focus. The
respective 2D function is shown as opaque surface and color
encodes the difference to R(x,y) using the same symmetric
colormap as the other levels. This intuitively preserves the
explicit difference information in context of the 2D surface
— a benefit of a 3D representation for our purpose. R(x,y)
itself is shown as a wireframe which applies grayscale col-
oring. This enables a comparison by spatial reference at least
for regions like peaks or borders. Potential future extensions
could include thresholds for relevance filtering [BBF* 11].

To support a quantitative comparison, all types of feature-
driven placement of the overview level (Sec. 4.1) can also be
applied to respective difference 2D functions, i.e., the dif-
ferences between each ensemble member and R(x,y). This
way, questions like “What is the maximal difference and
for which member?”, “How are peak differences distributed
across the domain?” and “How do overall differences to a
target function correlate to a simulation parameter?”” can be
answered easily. All positions are updated immediately (af-
ter a transition) when choosing a different R(x,y).

5. Domain-Oriented Analysis

The domain-oriented overview (see Fig. 1d) provides an ag-
gregated view of the 2D domain for the entire ensemble or a
user-defined subset thereof, e.g., to analyze a cluster of sim-
ilar members. The direction of aggregation is orthogonal to
member-oriented features in that it preserves the 2D domain
but aggregates across ensemble members (compare to Kao
et al. [KDPO1]). We support standard aggregates like max-
imum, minimum, range, average which are applied point-
wise to the members themselves or to respective difference
functions to R(x,y) (see Sec. 4.4). The aggregate "count" is
relevant to assess the coverage of the 2D domain by ensem-
ble members if it is not identical for all — a rare yet possible
case in our context. The coloring considers the result range
of the current aggregate: The colormap of the overview is
applied if the ranges of the function and the aggregate coin-
cide (e.g., for "maximum") whereas a different colormap is
enforced otherwise (e.g., for "range" and "count").

We support three types of domain-oriented interactions:
(1) Rectangular filtering enables to focus on particular fea-
tures in domain space. The member-oriented parts (Sec. 4)
only consider the non-filtered area for icon-based visualiza-
tions and feature-based computations. (2) Defining a specific
point of the domain (e.g., a peak) by a movable cross-hair
enables to compare its values for all members as one type
of feature supported by the member-oriented overview. (3)
The position of a 1D slice can be defined along one line of
the cross-hair (see the next section). All interactions trigger
updates of all affected results as fast as possible.

6. 1D Curve-Oriented Analysis

An analysis in terms of 1D curves is a possible compro-
mise between information loss and complexity. In addi-
tion to axis-orthogonal slices as defined in the domain-
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oriented overview (Sec. 5), we support aggregated pro-
files [MGKHO09], i.e., aggregating one dimension of the do-
main while varying the other.

Our approach supports a dedicated 1D-mode (see Fig. 5)
in which all types of feature-based placements can be ap-
plied to 1D data, i.e., considering only the samples along
each curve. Each icon in the member-oriented overview
displays the respective curve as a common function plot.
Extrema-preserving sampling strategies (see Sec. 4.1) are
also applied to 1D data. While color is not used in the cur-
rent implementation, we intend to experiment with two-tone
pseudo coloring [S*05] in the future.

In the 1D mode, the detail level displays selected
curves in the context of the entire ensemble based on en-
velopes [HS04], i.e., the minimum and maximum of a set
of curves as varying over the parameter. A gray envelope
for the entire ensemble serves as context. Envelopes of in-
teractively selected subsets are discriminated by different
hues and a single black curve is shown for the reference
function R(x,y). In the future, an application of more ad-
vanced visualization techniques for 1D ensembles is con-
ceivable [KMG™06,LH11,M*08].

7. Implementation and System Integration

Our approach has been integrated in a system for the vi-
sual exploration of multi-run engineering data as one type
of view. Other views include general multivariate visualiza-
tions (e.g., histogram, scatterplot matrix, table lens, paral-
lel coordinates) and approaches addressing particular tasks
of our application domain [PBK10, BPFG11]. The linking
between views is based on brushing simulation runs in any
view, and on updating derived data attributes. For example,
any feature derived from the 2D function ensemble in the
proposed approach can also be assigned to any scalar at-
tribute of any other view and is updated immediately during
interaction (e.g., when filtering the 2D domain).

To enable this tight integration, all views operate on a data

model that is optimized for multi-run simulation data in our
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application. As proposed by Konyha et al. [KMG*06] and
Matkovic et al. [MGKHO09], 1D and 2D functions are treated
as first-level objects like scalars and strings and the API pro-
vides respective access mechanisms.

Internally, multi-threading [PTMB09] ensures application
responsiveness and provides visual feedback during continu-
ous interaction. This is essential since feature-extraction and
downsampling may take a few seconds for large ensembles.
All parts are written in C++ and use OpenGL for rendering.

8. Evaluation

We evaluate our approach on two levels. First, we illustrate a
typical application scenario of our approach as conducted by
an engineer. Second, we report user feedback collected from
interviewing four experts in car engine-design.

8.1. Application Scenario

The background of the scenario is an elasto-hydrodynamic
analysis of an engine bearing design [Off11]. Relevant re-
sults of a multi-run simulation include asperity contact pres-
sure (ACP) and hydrodynamic pressure (HDP) as 2D func-
tions of angle and bearing width. The main goal is to analyze
the number and location of peaks as varying over the space
of design parameters.

As a first step of the analysis, the engineer inspects a
domain-oriented overview of maximal ACP for 100 simu-
lation runs (Fig. 6a). Peaks at the upper and lower border are
explained by tangential deviations. Since they are expected
and less interesting, the engineer filters the analyzed domain
to cover only the central peak which might indicate a po-
tential problem. In fact, most icons in the member-oriented
overview (Fig. 6b) show that central peak for cases where
the parameter "force scale" (Y axis) exceeds 1. The engineer
immediately explains this behavior as unplausible and hy-
pothesizes a wrong position of the bore hole for oil supply
in the engine model as the cause.

After revising the engine model, another 100 simulation
runs are generated for further analysis. The engineer repeats
the aforementioned steps for the new data. There are still
peaks in the center, but only for 11 members. Parameteriz-
ing the Y-axis of the member-oriented overview by the max-
imal function value reveals an expected linear relationship
between the parameter "radial clearance" and maximal ACP
(Fig. 6¢). However, 11 outliers are unexpected and corre-
spond to the members with central peaks.

The engineer decides to look at HDP (i.e., another 2D
simulation result) in an additional instance of our approach.
Plotting "Radial Clearance" versus maximal ACP shows in-
teresting clusters (Fig. 6d). Linking and brushing between
the two instances soon reveals that these clusters in HDP
correspond to groups having their maximal ACP at different
positions within the 2D domain. In particular, the 11 outliers
in ACP are distributed between two clusters in HDP which
are thus relevant for further investigation.
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Figure 6: An exemplary workflow: (a) filtering the domain-space focuses on a central peak; (b) most icons reveal the peak if
the parameter "force scale" exceeds 1; (c) after revising the model, 11 outliers still show a central peak; (d) linking+brushing
confirms that peaks in the domain-space of one 2D function ensemble correspond to clusters in the feature-space of another
one; (e) slicing reveals that the outliers (red envelope) drop earlier but form additional peaks; (f) linked parallel coordinates
indicate a problematic interplay of the design parameters "bore diameter” and "radial clearance”.

The upper left cluster in Fig. 6d comprises both outliers
and non-outliers which make it suitable to relate shapes of
outliers to cases considered normal. The engineer defines
the reference function R(x,y) as the point-wise average of all
non-outlying members of this cluster and switches to com-
parison mode (Fig. 4 illustrates this step). The mid-level fo-
cus shows a similar deviation from R(x,y) for all outliers in
the right half of the 2D domain: HDP drops between an angle
of 230 and 240 degree and a width of -3 and +3 (blue hole),
surrounded by one or two peaks (yellow). Slicing at width
equal to zero (Fig. 6e) confirms this finding: Outliers (red en-
velope) drop earlier than non-outliers (green envelope), but
form additional peaks afterwards.

These peaks indicate an instable behavior which is con-
sidered an important finding. The engineer hypothesizes that
the resolution of the bearing model might be insufficient for
certain regions of the design parameter space. Parallel coor-
dinates of four design parameters help to identify the regions
covered by outliers (red in Fig. 6f) as an interplay of high
values for bore diameter and low to moderate values for ra-
dial clearance. The green samples (non-outliers) prove that
bore diameter alone does not cause the observed behavior.

8.2. User Feedback

Our target users have been assessing elasto-hydrodynamic
engine bearings on a daily basis for more than ten years.
Their previous workflow for this task required multiple tools
and many intermediate steps (see also Sec. 1). Being re-
stricted to aggregates was considered imprecise while com-
paring multiple surface plots was very cumbersome and
time-consuming. The previous effort for assessing one en-
gine bearing was estimated as three days to one week.

Due to this need, the overall feedback to our approach
was very positive. The experts have been using it for three
months before being asked about feedback. Using our ap-
proach, they needed on average between 0.5 and 1.5 days
for a complete assessment of one engine bearing which is
a time saving of approximately 70%. It was also stressed
that important aspects were previously impossible at all, e.g.,
getting an overview of several hundred 2D functions. They
agreed that our approach enables a better understanding and
a higher confidence. One engineer commented, “Where I
only looked at the values of global extrema before, I can now
see their location and context in the 2D domain as well”.
This statement shows the importance of preserving the 2D
mental model even on an overview level. Another engineer
commented, “The icon itself is the plausibility check”.

The mid-level focus was considered intuitive and efficient
for an inspection of up to 50 to 100 ensemble members,
depending on the monitor resolution and the data-oriented
distribution. The 3D detail level was regarded essential to
convey a feeling for the shape of a surface. Interactions in
domain space were reported as being frequently necessary,
e.g., to filter numerical instabilities at boundaries, where the
visual context was described as being of much help. The ex-
perts also found the explicit comparison very valuable espe-
cially to detect small differences and to quantify them.

However, the interviewees also stressed that mastering
multiple linked views took them several days for familiar-
ization. The most critical objection concerned the suggested
colormaps as they expected the rainbow colormap which is
standard in their domain. They considered this critical for
acceptance and we thus enabled to change the default col-
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ormap. In the future, our approach will be distributed as part
of the software suite of the company AVL List GmbH. As
such, it will be available to thousands of users in engine de-
sign.

9. Discussion and Future Work

User feedback indicates that our design matches the goals
stated in Sec. 1.2. A comprehensive set of feature-extraction
methods and a tight integration between all parts enable a
flexible and holistic exploration (G1). The mid-level focus
and the detail level provide an efficient access to details
(G2). The comparison mode facilitates precise comparison
while avoiding decontextualization (G3). Data-driven place-
ment supports a feature-oriented, quantitative comparison
(G4). Filtering and slicing enable a local analysis within the
2D function domain (GS5). Icons preserve the mental model
of 2D functions even on the overview level (G6). Down-
sampling strategies preserve extrema even for many samples
and small icons (G7). Linking and brushing and derived di-
mensions enable a seamless integration with other views and
tools of the engineers (G9).

Scalability (G8) is addressed on multiple levels. Auto-
matic scaling minimizes occlusion in the overview level.
At worst, icons become points which still show a global
extremum while the scalability is comparable to a normal
scatterplot. Users can selectively increase the amount of de-
tail using the mid-level focus or slider-based zooming of the
axes. Technically, employing multi-threading and dedicated
graphics hardware ensures fluid interaction even for large
ensembles. Our approach has been successfully tested with
up to 4160 ensemble members. Larger ensembles are very
rare in our domain due to a prohibitive effort for simulation.

While our approach was designed to match the needs of
our application domain, we see much potential for gener-
alization. We believe — and will investigate in the future —
that our design is directly applicable to ensembles of 2D
functions or 2D scalar fields from other domains. We also
think that our approach could be extended to analyze im-
age data, e.g., satellite images [KDPO1] or segmentation re-
sults [TW™11]. Moreover, an analysis in terms of 2D func-
tions can also be reasonable for ensembles of other dimen-
sionality, e.g., slicing volumetric data.

Some lessons we have learned from our design could also
be helpful when designing approaches for other types of en-
semble data. The interplay between different directions of
aggregation should be considered as important as defining
the aggregations themselves. In this respect, we proposed in-
teraction concepts for tightly coupling domain-oriented and
member-oriented overviews. Moreover, the explicit visual-
ization of differences (Sec. 4.4) turned out to be crucial for
a precise comparison of ensemble members while juxtaposi-
tion was found to be insufficient for this task.

The mid-level focus is a novel focus+context approach for
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glyph-based visualizations that can be considered an alterna-
tive to distortion-oriented approaches and to relying on mul-
tiple coordinated views. As a key advantage of the mid-level
focus, users do not need to shift the focus of attention to a
different view for getting details which also facilitates the
correspondence when focusing on multiple items simulta-
neously. Our target users had no difficulties in discriminat-
ing the two levels and in interpreting the different placement
strategies, i.e., data-driven placement and avoidance of oc-
clusion. However, there is a trade-off between maximizing
the spatial correlation between Bls and FIs and minimizing
occlusion. In our context, an FI occluding the corresponding
BI was found tolerable while other configurations of occlu-
sion are punished. Other applications may opt to avoid any
kind of occlusion at the cost of less spatial correlation. As
another option, the X and Y dimensions could be treated dif-
ferently to largely preserve the data-driven placement also
for FIs with respect to one dimension at the cost of an in-
creased distance between FIs and Bls with respect to the
other. In general, one limitation of the mid-level focus con-
cerns its scalability to a few dozen items (see Sec. 8.2). How-
ever, we believe that the benefits potentially outweigh this
limit for many applications.

We see multiple directions for future work: The design
space of the mid-level focus deserves a more thorough eval-
uation. Context-preserving visual links [SWS* 11] could ad-
dress the occlusion of connection lines. Based on the con-
cept by Berger et al. [BPFG11], a continuous analysis of a
sampled parameter space could integrate a weighted interpo-
lation of 1D and 2D ensemble members. Finally, a long-term
field study will provide new insights concerning the adoption
by additional groups of engineers.

10. Conclusion

This paper described a design study of an interactive visual
approach to analyze 2D function ensembles in the develop-
ment process of powertrain systems. The design is based on
a tight integration of domain-oriented and member-oriented
overviews, feature-based placement, multiple levels of de-
tail, and support for explicit comparison. As the key chal-
lenges of our design approach, we addressed information
loss by downsampling and occlusion by data-driven glyph
placement. User feedback confirms a significant time saving
and considerable qualitative gains for an analysis. We be-
lieve that our design may be beneficial for 2D function en-
sembles in other domains, and that it could serve as a basis
for analyzing ensembles of images or volumes.
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